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Abstract. Level structure is an essential aspect of the classical theory of

modular forms and elliptic curves, and it plays a similarly important role in
elliptic cohomology and its applications to physics and stable homotopy theory.

The classical theory doesn’t carry over cleanly to the spectral case, however,

because level structures and their associated isogenies can fail to be étale.
This talk concerns a new approach I have developed for understanding elliptic

cohomology with (possibly ramified) level structure. By studying the effect

of isogenies on the dualizing line, I obtain a tractable invariant characterizing
“how ramified” an isogeny is. This invariant can be used to filter the abstract

moduli stack of isogenies between oriented elliptic curves, ultimately producing

a stratification by Deligne-Mumford stacks.
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1. Level Structure on Elliptic Curves

In the classical complex-analytic case, we can describe the moduli stack of elliptic
curves as a global quotient orbifold: Mell

∼= H//SL2(Z) = (H∪H)//GL2(Z). This
moduli stack carries a line bundle ω of fiberwise differential 1-forms, and a modular
form of weight k is a section of ω⊗k.

This construction can be generalized. The moduli stack of elliptic curves over
Z similarly carries a line bundle ω, allowing us to define modular forms over Z;
and if we instead take Lurie’s moduli stack Mor

ell of oriented elliptic curves (that
is, strict spectral elliptic curves with an isomorphism of their completion to the
Quillen formal group), the analogue of ω is already included via the orientation
and so we can simply define the E∞-ring of topological modular forms, TMF , to be
the global sections of the structure sheaf.

If you’ve seen modular forms before, though, you know that number theorists
don’t stop at plain ol’ elliptic curves. Rather, they generalize to elliptic curves
with level structure, with the sections of the analogous line bundle on the associ-
ated moduli stack called modular forms with level structure. For any congruence
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subgroup1 Γ ⊂ GL2(Z), the moduli of elliptic curves with Γ-structure is defined as
(H ∪H)/Γ, which is a GL2(Z)/Γ-cover of Mell.

Roughly speaking, a level structure on an elliptic curve E (over a ring R) is the
data of an isogeny E → E′, with the level being the degree of the isogeny. For the
subgroup

Γ(N) =

{(
a b
c d

)
∈ GL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}
,

for example, a Γ(N) level structure on an elliptic curve is a homomorphism (Z/NZ)2 →
E(R) whose image is equal to E[N ](R) as a Cartier divisor. We can think of this as
a pair of isogenies with transverse kernels. For the closely-related subgroup Γ1(N),
a level structure is a degree N isogeny together with a choice of generator for the
kernel, and for the subgroup Γ0(N) it is a degree N isogeny whose kernel admits a
generator after an fppf extension. (See [2] for more info.)

Level structures show up naturally in many contexts. For example, a Γ0(2)-
structure on a complex elliptic curve is the same as a spin structure, and conse-
quently the universal elliptic genus is valued in the ring of modular forms with
Γ0(2)-structure. (Its cousin the Witten genus is valued in plain old modular forms,
at least for string manifolds.) In number theory, level structures are essential to
just about every aspect of the theory of modular forms, including the construction
of Hecke operators, the philosophy of cusp forms, automorphic representations, the
Langlands conjecture for GL2, and the modularity theorem.

Level structures also play an important role in topology. For instance, the ring
spectra LK(2)TMF0(N) frequently appear in finite resolutions of the K(2)-local
sphere, as they are closely related to (and sometimes equal to) fixed-point spectra
of E2 by the Morava stabilizer group. They’re also useful for studying equivariant
tmf: genuine S1-equivariant tmf can be approximated by Cn-equivariant tmf, and
we have a decomposition ([5])

TMFCn [1/n] ≃
∏
k|n

TMF1(k)[1/n]

describing the fixed-point spectrum after inversion of n. Moreover, the inclusion of
level structure allows us to more clearly demonstrate the relationship between tmf
and K-theory: as shown by Hill-Lawson in [1] (extending work of Lawson-Naumann
in [3]), there is a commutative diagram of tmf -algebras

tmf0(3)[1/3] ko[1/3]

tmf1(3)[1/3] ku[1/3],

where the top map factors through the localization of the well-known map tmf →
ko[[q]].

You’ll notice, though, that everything here is localized. This isn’t a coincidence.
Level N structures will not, in general, be étale unless N is inverted. Over Z the
moduli stacks M(Γ) aren’t always Deligne-Mumford (though they are Artin), and
while their maps to Mell are finite and faithfully flat, they may be ramified. This is
quite a problem, since we need things to be étale to lift them to spectral algebraic

1A congruence subgroup is a subgroup of GL2(Z) containing some Γ(N), defined below.
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geometry. (Put another way, preserving the orientation requires a map to be an
isomorphism on formal completions, which is the case iff it’s étale.) But if we invert
the level N to fix this, we lose the p-local information for every prime p dividing
N . If we try to incorporate every level structure, this will make us lose basically
all the chromatic information we want to have!

My solution: define the moduli stack from scratch, and break it into easier-to-
understand pieces.

2. The Abstract Moduli Stack and Linear Ramification

Definition 2.1. We write IsogR for the functor CAlgR → S sending an algebra A
to the space of (not necessarily orientation-preserving) isogenies of oriented elliptic
curves over A. We call this the moduli stack of oriented elliptic curves with level
structure.

It’s not too hard to show that this is a sheaf in the étale topology, but for the
sake of time I’ll ask you to take my word for it. It isn’t known to be any kind
of geometric stack, though, and it probably isn’t one. (It’s probably not Deligne-
Mumford, at least.) Working with it therefore requires us to break it up into pieces
that are more manageable. We need a couple of tools to do this, the first one being
a way to measure the ramification explicitly.

Definition 2.2. Let f : E → E′ be an isogeny of oriented elliptic curves. We get

an induced map f̂ on their completions, and since they are oriented, we can identify

it with an endomorphism of ĜQ
R. Linearizing this gives us a module endomorphism

of the so-called dualizing line (aka E1 cotangent space) ωĜQ
R
, which is canonically

isomorphic to Σ−2R. Suspending twice, we obtain a module endomorphism of R
itself, and therefore an element r ∈ π0R. This gives us a map ram1 : IsogR → A1

R

in Shvét(CAlg) which we call linear ramification.

Let’s write Isog(r) for the substack of isogenies with linear ramification equal to
a unit times r, and IsogrR for the substack of isogenies with ramification exactly
r. (More precisely, this sends an R-algebra A to the subspace of isogenies whose
linear ramification is (a unit times) the image of r, rA. This is also an étale sheaf.)
I claim that these are Deligne-Mumford stacks. This claim rests on two crucial
results.

Theorem 2.3. Isog(1) is a Deligne-Mumford stack.

Theorem 2.4. There is an orthogonal factorization system (L,R) on the category
of isogenies of elliptic curves such that

• L is the class of morphisms inducing an isomorphism on étale fundamental
groups, and

• R is the class of étale isogenies.

To summarize, the second theorem essentially follows in the same way that one
proves the corresponding result for Lie groups: take the connected-étale sequence
of the kernel, and use this sequence and the 9-lemma to construct the factorization.
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0 0 0

0 K0 K0 0 0

0 K E E′ 0

0 K èt E/K0 E′ 0

0 0 0

Another application of the 9-lemma shows that this factorization is unique.
The first theorem is proven using a theorem of Lurie’s that I call “spectral

deformation of representability”. (This result is Theorem 18.1.0.2 in [4], and is one
form of Artin-Lurie representability.)

Theorem 2.5 (Spectral Deformation of Representability). Let X : CAlgcnS → S be
a functor. Then X is a spectral Deligne-Mumford stack if and only if the following
four conditions are satisfied:

i) X|CAlg♡
S
agrees with Y |CAlg♡

S
for some spectral Deligne-Mumford stack Y .

ii) X admits a cotangent complex.
iii) X is nilcomplete.
iv) X is infinitesimally cohesive.

Proof that Isog(1) is a DM-stack. The proof of condition (ii) is rather technical,
but the main point is that it can be reduced to the classical case. Condition (iii)
is nilcompleteness, meaning that X(A) = limn X(τ≤nA); this follows from the fact
that étale subgroups are invariant under truncation of the base ring. Condition
(iv), infinitesimal cohesion, essentially checks that X is actually a formal moduli
problem. In our case, comes down to checking that a certain kind of pullback of
E∞-algebras induces a pullback on the corresponding spaces of étale subgroups,
which is proven by a Nakayama’s lemma argument relying on the fact that base
change preserves exact sequences of strict abelian varieties.

The most interesting condition is probably (i), since it can be proven by showing
that the restriction of X to classical rings is a classical DM-stack. Since the moduli
of subgroups of rank N in an elliptic curve E is representable by an affine scheme
([2]), and we can take the coproduct over all N , we’re reduced to showing that we
can effectively “cut out” the étale subgroups from the moduli of all finite subgroups.
Fortunately, this is the case: if we write G◦ for the connected component of the uni-
versal finite subgroup, the complement of the support of G◦ represents the classical
moduli problem, showing that it is representable by a quasi-affine scheme. □

Putting these two results together, we can show that Isog(r) is DM as follows.
For any elliptic curve E with an isogeny of ramification (r) out of it, we can uniquely
factor this as E → Er → E′, where the second map is étale and the first is the
initial isogeny out of E with ramification equivalent to r. Consequently, Isog(E/r)
is equivalent to Isog(Er/(1)), which is a closed substack of Isog(1) and thus a
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DM-stack. The stacks Isog(E/(r)) (ranging over all oriented elliptic curves over
R-algebras) form an étale cover of Isog(r), so it’s covered by DM-stacks and is thus
DM. Now just note that Isogr is a closed substack of Isog(r).

Finally, a bit of algebraic geometry shows that the space of points of Isog is,
as one would expect, the union of the spaces of points of Isogr as r varies. The
union isn’t disjoint because of the way points work (e.g. A1 isn’t the disjoint union
of the substacks corresponding to the elements of the base ring), but I’m currently
working on giving a topos-theoretic description of the stratification. My most recent
result is as follows. Here Isog≤r is the moduli of isogenies whose linear ramification
divides r.

Theorem 2.6. The pro-étale topos of Isog admits a stratification (in the sense of
Barwick-Glasman-Haine)

Isog(1) ↪−→ · · · ↪−→ Isog≤r ↪−→ · · · ↪−→ Isog≤0 = Isog

over Prin(R) whose strata are of the form Isog(r).
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